Perspectives on Moist Baroclinic Instability: Implications for the Growth of Monsoon Depressions
نویسندگان
چکیده
Little is known about the genesis and growth mechanisms of monsoon depressions, despite the great importance of these storms for the hydrological cycle of the Asian–Australian monsoon region. Of the few theoretical studies that have examined this issue, most have attributed the amplification of monsoon depressions to some form of baroclinic instability or stable baroclinic growth, highly modified by the diabatic effects of moist convection. Here, a simple criterion—namely, the upshear tilt of potential vorticity anomalies—is argued be necessary for dry or moist baroclinic growth. Reanalysis data are then used to assess whether a large ensemble of South Asian monsoon depressions has vertical structures consistent with this criterion. The evolution of these monsoon depressions is compared with that of ensembles of hurricanes and diabatic Rossby waves, the latter being prototypical examples of moist baroclinic instability. During their amplification phase, monsoon depressions do not exhibit an upshear tilt of potential vorticity anomalies. Many similarities are found between developing monsoon depressions and hurricanes but few with diabatic Rossby waves. Thus, the mechanism responsible for the intensification of monsoon depressions remains unknown, but these results indicate greater similarity with the general process of tropical depression spinup than with moist convectively coupled baroclinic instability.
منابع مشابه
Transient moist baroclinic instability
The non-modal transient properties of the Eady baroclinic model with a simple heating parameterization are examined. The time-dependent non-modal behavior of the moist baroclinic model is investigated by calculating the energy amplification of optimal perturbations for relevant time-scales and by calculating the energy evolution of random initial conditions. Enhanced non-modal growth on time-sc...
متن کاملObservational Evaluation of a Convective Quasi-Equilibrium View of Monsoons
Idealized dynamical theories that employ a convective quasi-equilibrium (QE) treatment for the diabatic effects of moist convection have been used to explain the location, intensity, and intraseasonal evolution of monsoons. This paper examines whether observations of Earth’s regional monsoons are consistent with the assumption of QE. It is shown here that in local summer climatologies based on ...
متن کاملAn Investigation of the Onsets of the 1999 and 2000 Monsoons in Central Nepal
The Marsyandi River basin in the central Nepalese Himalayas is a topographically complex region, with strong spatial gradients of precipitation over various timescales. A meteorological network consisting of 20 stations was installed at a variety of elevations (528–4435 m) in this region, and measurements of rainfall were made during the 1999 and 2000 summer monsoons. The onsets of the 1999 and...
متن کاملMonsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar
Three-dimensional structure of summer monsoon convection in the Himalayan region and its overall variability are examined by analyzing data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over the June–September seasons of 2002 and 2003. Statistics are compiled for both convective and stratiform components of the observed radar echoes. Deep intense convective echoes (40 ...
متن کاملSimulations of Subtropical Cyclones in a Baroclinic Channel Model
The present study considers a variety of cyclone developments that occur in an idealized, baroclinic channel model featuring full condensation heating effects over an ocean with prescribed sea surface temperature variation. The geostrophic basic-state jet is specified by the tropopause shape, and horizontal shear is included by specifying the meridional variation of zonal wind on the lower boun...
متن کامل